Peranan Dark Septate Endophyte dalam Budidaya Tanaman

Authors

  • Andi Nur Cahyo Indonesian Rubber Research Institute

DOI:

https://doi.org/10.31850/jgt.v10i2.785

Keywords:

environmental stress, dark septate endophyte, insulated hyphae, microscleretia, fungi, absorption of Nitrogen, absorption of Phosfor

Abstract

Dark Septate Endophyte (DSE) is a fungus in symbiosis with the host plant and is characterized by the presence of dark pigment, insulated hyphae, and microscleretia. The effect of DSE fungi on the host plant is specific according to the fungal strain, host plant species, and environmental conditions. DSE fungi can colonize host plant roots intra and extracellularly as well as ectendomycorrhiza. In DSE colonization, sometimes it fails to form a dense mantle and hartig net, but instead, it forms melanin microscleretia. The symbiosis between DSE fungi and suitable host plants can increase plant growth, uptake of N and P elements, resistance to drought, extreme temperatures, and protect plants from plant-disturbing organisms. The increase in the uptake of N and P elements was caused by the ability of DSE fungi to produce proteolytic enzymes and phosphatases that can mineralize organic N and P so that they become available to plants. Increased resistance to drought and extreme temperatures is thought to be due to melanin hyphae which can help absorb water from the soil and produce antioxidants and protection against free radicals. In addition, some strains of DSE fungi also produce chlorine to protect plants from plant-disturbing organisms.


References

Barrow, J. R., Lucero, M. E., Reyes-Vera, I., & Havstad, K. M. (2008). Do symbiotic microbes have a role in regulating plant performance and response to stress? Communicative & Integrative Biology, 1(1), 69–73. https://doi.org/10.4161/cib.1.1.6238.

Behie, S. W., & Bidochka, M. J. (2014). Nutrient transfer in plant–fungal symbioses. Trends in Plant Science, 19(11), 734–740. https://doi.org/10.1016/j.tplants.2014.06.007.

Bonfante, P., & Genre, A. (2010). Mechanisms underlying beneficial plant–fungus interactions in mycorrhizal symbiosis. Nature Communications, 1(4), 1–11. https://doi.org/10.1038/ncomms1046.

Campanile, G., Ruscelli, A., & Luisi, N. (2007). Antagonistic activity of endophytic fungi towards Diplodia corticola assessed by in vitro and in planta tests. European Journal of Plant Pathology, 117(3), 237–246. https://doi.org/10.1007/s10658-006-9089-1.

Della Monica, I. F., Saparrat, M. C. N., Godeas, A. M., & Scervino, J. M. (2015). The co-existence between DSE and AMF symbionts affects plant P pools through P mineralization and solubilization processes. Fungal Ecology, 17, 10–17. https://doi.org/10.1016/j.funeco.2015.04.004.

Fernando, A. A., & Currah, R. S. (1996). A comparative study of the effects of the root endophytes Leptodontidium orchidicola and Phialocephala fortinii (Fungi Imperfecti) on the growth of some subalpine plants in culture. Canadian Journal of Botany, 74(7), 1071–1078. https://dor.org/10.1139/b96-131.

Fikret, Y., Manar, T., Şebnem, E., Şebnem, K., & Özlem, U. (2013). SOD, CAT, GR and APX Enzyme Activities in Callus Tissues of Susceptible and Tolerant Eggplant Varieties under Salt Stress. Research Journal of Biotechnology, 8(11), 45–51.

Gill, S. S., Gill, R., Trivedi, D. K., Anjum, N. A., Sharma, K. K., Ansari, M. W., Ansari, A. A., Johri, A. K., Prasad, R., Pereira, E., Varma, A., & Tuteja, N. (2016). Piriformospora indica: Potential and Significance in Plant Stress Tolerance. Frontiers in Microbiology, 7, 1–20. https://doi.org/10.3389/fmicb.2016.00332.

Gonzalez Mateu, M., Baldwin, A. H., Maul, J. E., & Yarwood, S. A. (2020). Dark septate endophyte improves salt tolerance of native and invasive lineages of Phragmites australis. The ISME Journal, 14(8), 1943–1954. https://doi.org/10.1038/s41396-020-0654-y.

Hubbard, M., Germida, J. J., & Vujanovic, V. (2014). Fungal endophytes enhance wheat heat and drought tolerance in terms of grain yield and second-generation seed viability. Journal of Applied Microbiology, 116(1), 109–122. https://doi.org/10.1111/jam.12311.

Jumpponen, A. (2001). Dark septate endophytes—Are they mycorrhizal? Mycorrhiza, 11(4), 207–211. https://doi.org/10.1007/s005720100112.

Khastini, R. O., Ohta, H., & Narisawa, K. (2012). The role of a dark septate endophytic fungus, Veronaeopsis simplex Y34, in Fusarium disease suppression in Chinese cabbage. Journal of Microbiology, 50(4), 618–624. https://doi.org/10.1007/s12275-012-2105-6.

Knapp, D. G., Pintye, A., & Kovács, G. M. (2012). The Dark Side Is Not Fastidious – Dark Septate Endophytic Fungi of Native and Invasive Plants of Semiarid Sandy Areas. PLoS ONE, 7(2), e32570. https://doi.org/10.1371/journal.pone.0032570.

Lin, H.-F., Xiong, J., Zhou, H.-M., Chen, C.-M., Lin, F.-Z., Xu, X.-M., Oelmüller, R., Xu, W.-F., & Yeh, K.-W. (2019). Growth promotion and disease resistance induced in Anthurium colonized by the beneficial root endophyte Piriformospora indica. BMC Plant Biology, 19(1), 1–10. https://doi.org/10.1186/s12870-019-1649-6.

Majewska, M. L., Błaszkowski, J., Nobis, M., Rola, K., Nobis, A., Łakomiec, D., Czachura, P., & Zubek, S. (2015). Root-inhabiting fungi in alien plant species in relation to invasion status and soil chemical properties. Symbiosis, 65(3), 101–115. https://doi.org/10.1007/s13199-015-0324-4.

Mandyam, K., & Jumpponen, A. (2005). Seeking the elusive function of the root-colonising dark septate endophytic fungi. Studies in Mycology, 53, 173–189. https://doi.org/10.3114/sim.53.1.173.

Muthukumar, T., Senthilkumar, M., Rajangam, M., & Udaiyan, K. (2006). Arbuscular mycorrhizal morphology and dark septate fungal associations in medicinal and aromatic plants of Western Ghats, Southern India. Mycorrhiza, 17(1), 11–24. https://doi.org/10.1007/s00572-006-0077-2.

Narisawa, K., Usuki, F., & Hashiba, T. (2004). Control of Verticillium Yellows in Chinese Cabbage by the Dark Septate Endophytic Fungus LtVB3. Phytopathology, 94(5), 412–418. https://doi.org/10.1094/PHYTO.2004.94.5.412.

Newsham, K. K. (1999). Phialophora graminicola, a dark septate fungus, is a beneficial associate of the grass Vulpia ciliata ssp. Ambigua. New Phytologist, 144(3), 517–524. https://doi.org/10.1046/j.1469-8137.1999.00537.x.

Newsham, K. K. (2011). A meta-analysis of plant responses to dark septate root endophytes. New Phytologist, 190(3), 783–793. https://doi.org/10.1111/j.1469-8137.2010.03611.x.

Plassard, C., & Dell, B. (2010). Phosphorus nutrition of mycorrhizal trees. Tree Physiology, 30(9), 1129–1139. https://doi.org/10.1093/treephys/tpq063.

Porras-Alfaro, A., Herrera, J., Sinsabaugh, R. L., Odenbach, K. J., Lowrey, T., & Natvig, D. O. (2008). Novel Root Fungal Consortium Associated with a Dominant Desert Grass. Applied and Environmental Microbiology, 74(9), 2805–2813. https://doi.org/10.1128/AEM.02769-07.

Redman, R. S. (2002). Thermotolerance Generated by Plant/Fungal Symbiosis. Science, 298(5598), 1581–1581. https://doi.org/10.1126/science.1072191.

Rodriguez, R. J., Henson, J., Van Volkenburgh, E., Hoy, M., Wright, L., Beckwith, F., Kim, Y.-O., & Redman, R. S. (2008). Stress tolerance in plants via habitat-adapted symbiosis. The ISME Journal, 2(4), 404–416. https://doi.org/10.1038/ismej.2007.106.

Rożek, K., Rola, K., Błaszkowski, J., & Zubek, S. (2018). Associations of root-inhabiting fungi with herbaceous plant species of temperate forests in relation to soil chemical properties. Science of The Total Environment, 649, 1573–1579. https://doi.org/10.1016/j.scitotenv.2018.08.350.

Santos, S. G. dos, Silva, P. R. A. da, Garcia, A. C., Zilli, J. É., & Berbara, R. L. L. (2017). Dark septate endophyte decreases stress on rice plants. Brazilian Journal of Microbiology, 48(2), 333–341. https://doi.org/10.1016/j.bjm.2016.09.018.

Smith, S. E., & Smith, F. A. (1990). Structure and function of the interfaces in biotrophic symbioses as they relate to nutrient transport. New Phytologist, 114(1), 1–38. https://doi.org/10.1111/j.1469-8137.1990.tb00370.x.

Surono, & Narisawa, K. (2017). The dark septate endophytic fungus Phialocephala fortinii is a potential decomposer of soil organic compounds and a promoter of Asparagus officinalis growth. Fungal Ecology, 28, 1–10. https://doi.org/10.1016/j.funeco.2017.04.001.

Unnikumar, K. R., Sree, K. S., & Varma, A. (2013). Piriformospora indica: A versatile root endophytic symbiont. Symbiosis, 60(3), 107–113. https://doi.org/10.1007/s13199-013-0246-y.

Vergara, C., Araujo, K. E. C., Alves, L. S., Souza, S. R. de, Santos, L. A., Santa-Catarina, C., Silva, K. da, Pereira, G. M. D., Xavier, G. R., & Zilli, J. É. (2018). Contribution of dark septate fungi to the nutrient uptake and growth of rice plants. Brazilian Journal of Microbiology, 49(1), 67–78. https://doi.org/10.1016/j.bjm.2017.04.010.

Vohník, M., Albrechtová, J., & Vosátka, M. (2005). The inoculation with Oidiodendron maius and Phialocephala fortinii alters phosphorus and nitrogen uptake, foliar C:N ratio and root biomass distribution in Rhododendron cv. Azurro. Symbiosis, 40, 87–96.

Wagg, C., Pautler, M., Massicotte, H. B., & Peterson, R. L. (2008). The co-occurrence of ectomycorrhizal, arbuscular mycorrhizal, and dark septate fungi in seedlings of four members of the Pinaceae. Mycorrhiza, 18(2), 103–110. https://doi.org/10.1007/s00572-007-0157-y.

Zhan, F., He, Y., Zu, Y., Li, T., & Zhao, Z. (2011). Characterization of melanin isolated from a dark septate endophyte (DSE), Exophiala pisciphila. World Journal of Microbiology and Biotechnology, 27(10), 2483–2489. https://doi.org/10.1007/s11274-011-0712-8.

Published

25-09-2021

Issue

Section

Reviews