• Andree Wijaya Setiawan Universitas Kristen Satya Wacana




bacterial wilt, Ralstonia solanacearum, epidemiology, complex species, disease management.


Bacterial wilt is one of the most important diseases due to the difficulty of its control and its effect on the production of many economically valuable plants throughout the world. Ralstonia solanacearum bacteria which later will be better known as Ralstonia solanacearum species complex has a very wide range of host plants. More than 400 species of plants from 50 botanical families, including important plants that are cultivated in Indonesia such as potatoes, tomatoes, eggplants, tobacco, cloves and bananas. This review discusses the epidemiology of diseases caused by R. solanacearum, development of R. solanacearum species complex and mechanisms of action in disease management based on chemical, biological, cultivation and physical methods.

Author Biography

Andree Wijaya Setiawan, Universitas Kristen Satya Wacana

Prodi Agroteknologi, Fakultas Pertanian dan Bisnis Universitas Kristen Satya Wacana


Acharya, S., & Srivastava, R.C. (2009). Bactericidal properties of the leaf extracts of Psidium guajava and Psidium guineense against Ralstonia solanacearum by two analytical methods. Vegetos, 22: 33-37.

Adhi EM., Supriadi, Febriyanti, D., & Karyani, N. (1998). Patogenisitas tiga isolat Ralstonia solanacearum pada tiga tipe kencur. Prosiding seminar nasional IV PFI komisariat Jateng dan DIY, Surakarta. hlm. 421–425.

Agrios, G.N. (2005). Plant Pathology 5th Edition. Academic Press, San Diego, CA.

Ailloud, F., Lowe, T., Cellier, G., Roche, D., Allen, C., & Prior, P. (2015). Comparative genomic analysis of Ralstonia solanacearum reveals candidate genes for host specificity. BMC Genomics 16:270.doi: 10.1186/S12864-0151474-8.

Allen C., Prior P., & Hayward A.C. (2005). Bacterial Wilt Disease andthe Ralstonia solanacearum Species Complex. APS Press, St.Paul, MN, USA, 528 pp.

Allen, C., Kelman, A., & French, E. R. (2001). Brown rot. Halaman 11-13 dalam: Compendium of Potato Diseases. W. R. Stevenson, R. Loria, G. D. Franc, and D. P. Weingartner, eds. American Phytopathological Society, St. Paul, MN.

Almeida, H.O., Mattos, E.C., Barbosa, M.O., Teixeira, F.R., & Magalhaes, R.D.M. (2007). Peptide fraction inhibiting plant pathogen growth predominated in cell wall extracts from young plants or in soluble cell fraction from expanded leaves from eggplants. J. Phytopathol., 155: 735-737.

Alvarez, B., Lopez, M.M., & Biosca, E.G. (2007). Influence of native microbiota on survival of Ralstonia solanacearum phylotype II in river water microcosms. Applied Environ. Microbiol., 73: 7210-7217.

Amorim, E.P.D., de Andrade, F.W.R., da Silva Morae, E.M., da Silva, J.C., da Silva Lima, R., & de Lemos, E.F.P. (2011). Antibacterial activity of essential oils and extracts on the development of Ralstonia solanacearum in banana seedlings. Rev. Bras. Frutic., 33: 392-398.

Arthy, J.R., Akiew, E.B., Kirkegaard, J.A., & Trevorrow, P.R. (2005). Using Brassica spp. as Biofumigants to Reduce the Population of Ralstonia solanacearum. dalam: Bacterial Wilt Disease and the Ralstonia solanacearum Species Complex, Allen, C., P. Prior & A.C. Hayward (Eds.)., American Phytopathological Society Press, St. Paul, MN., pp: 159-165.

Arwiyanto, T. & Hartana, I. (2001). Percobaan lapangan pengendalian hayati penyakit layu bakteri tembakau (Ralstonia solanacearum). Mediagama 3:7–14.

Asman A, Esther, MA., & Sitepu, D. (1998). Penyakit layu, budok, dan penyakit lainnya serta strategi pengendaliannya. Monograf Nilam. Balai Penelitian Tanaman Rempah dan Obat, Bogor. Hlm. 84–88.

Belalcazar, S. C., Rosales, F. E., & Pocasangre, L. E. (2004). “El Moko del banano y el plátano y el rol de las plantas hospederas en su epidemiología,” in Proceedings of the XVI International ACORBAT Meeting. September 26-October 1, eds M. Orozco-Santos, J. Orozco-Romero, M. Robles-Gonzalez, J. Velazquez-Monreal, V. Medina-Urrutia, and J. A. Hernandez-Bautista (Oaxaca: Artturi), 16–35.

Bocsanczy, A. M., Huguet-Tapia, J. C., & Norman, D. J. (2014). Whole-genome sequence of Ralstonia solanacearum P673, a strain capable of infecting tomato plants at low temperatures. Genome Announc. 2, e00106-14.doi: 10.1128/ genomeA.00106-14.

Boonham, N., Glover, R., Tomlinson, J., & Mumford, R. (2008). Exploiting generic platform technologies for the detection and identification of plant pathogens. Eur. J. Plant Pathol., 121: 355-363.

Boshou, L. (2005). A Broad Review and Perspective on Breeding for Resistance to Bacterial Wilt. dalam: Bacterial Wilt Disease and the Ralstonia Solanacearum Species Complex. Allen, C., P. Prior & A.C. Hayward (Eds.). American Phytopathological Society, APS Press, St. Paul, MN., pp: 225-238.

Buddenhagen, I. (1962). Strains of Pseudomonas solanacearum in indigenous hostsin banana plantations of Costa Rica, and their relationship to bacterial wilt ofbananas. Phytopathology, 50, 660–664.

Buddenhagen, I. (1986). “Bacterial wilt revisited,” in Bacterial Wilt Disease in Asiaand the South Pacific, ed. G. J. Persley (Canberra: ACIAR), 126–143.

Buddenhagen, I. W. (2009). Blood bacterial wilt of banana: history, field biology and solution. Acta Hort. 828, 57–68.doi: 10.17660/ActaHortic.2009.828.4.

Cahyaniati, C., Mortensen, N., & Mathur, S. B. (1997). Bacterial Wilt of Banana in Indonesia. Technical Bulletin. Jakarta: Directorate Plant Protectionof Indonesia.

Caldwell, D. et al. (2017) Ralstonia solanacearum differentially colonizes roots of resistantand susceptible tomato plants. Phytopathology 107, 528–536 http://dx.doi.org/10.1094/PHYTO09-16-0353-R.

Cao, Y., Tian, B., Liu, Y., Cai, L., Wang, H., Lu, N., Wang, M., Shang, S., Luo, Z. & Shi, J. (2013). Genome sequencing of Ralstonia solanacearum FQY _4, isolated from a bacterial wilt nursery used for breeding crop resistance. Genome Announc 1, e00125-13.

Cardoso, S.C., Soares, A.C.F., Brito, A.D.S., Laranjeira, F.F., Ledo, C.A.S., and dos Santos, A.P. (2006). Control of tomato bacterial wilt through the incorporation of aerial part of pigeon pea and crotalaria to soil. J. Phytopathol., 32: 27-33.

Cervantes-Godoy, D., & Dewbre, J. (2010). Economic importance of agriculturefor sustainable development and poverty reduction: findings from a case studyof Indonesia. Paper Presented to the OEDC Global Forum on Agriculture, Paris.

Chandrashekara, K.N., Jagadish, K., Krishnamurthy, K.B., RashmiS., Prasanna Kumar, M.K., Sathya L., Ibem H.K., Ramachandra Y.L., & Akella,V. (2006). Single chain antibody fragments transcriptionally fused to ALP specific against Ralstonia solanacearum virulent and avirulent strains to detect field samples of infected plants. dalam: International Bacterial Wilt Symposium. York, England, 17–20 July 2006, 34 pp.

Chen, D., Liu, X., Li, C., Tian, W., Shen, Q., & Shen, B. (2014). Isolation of Bacillus amyloliquefaciens S20 and its application in control of eggplant bacterial wilt. J. Environ. Manage., 137: 120-127.

Coplin, D. L., Sequeira, L., & Hanson, R. S. (1974). Pseudomonas solanacearum: virulence of biochemical mutants. Canadian Journal of Microbiology, 20(4), 519-529.

Dahal, D., Pich, A., Braun, H. P., & Wydra, K. (2010). Analysis of cell wall proteins regulated in stem of susceptible and resistant tomato species after inoculation with Ralstonia solanacearum: a proteomic approach. Plant molecular biology, 73(6), 643-658.

de C. ontes, N., Kronka, A. Z., Moraes, M. F. H., Nascimento, A. S., & Fujinawa, M. F. (2011). Incorporation of neem leaves into soil to control bacterial wilt of tomato. Journal of Plant Pathology, 741-744.

Denny, T. (2000). Ralstonia solanacearum a plant pathogen in touch with its host. Trends Microbiology, 11, 486–489.

Denny, T. P. (2006). “Plant pathogenic Ralstonia species,” in Plant AssociatedBacteria, ed. S. S. Gnanamanickam (Dordrecht: Springer), 573–644.doi: 10.1007/978-1-4020-4538-7_16.

Denny, T.P, & Baek, S.R. (1991). Genetic evidence that extracellular polysaccharide is a virulence factor of Pseudomonas solanacearum. Molecular Plant-Microbe Interactions, 4, 198-206.

Denny, T.P., & Hayward, A.C. (2001). Gram Negative Bacteria. dalam: Laboratory Guide for Identification of Plant Pathogenic Bacteria, Schaad, N.W., Jones, J.B., & Chun, W. (Eds.)., APS Press, St. Paul, Minnesota.

Denny, T.P., Brumbley, S.M., Carney, B.F., Clough, S.J., & Schell, M.A. (1994). Phenotype Conversion of Pseudomonas solanacearum: Its Molecular Basis and Potential Function. dalam: Bacterial Wilt: The Disease and its Causative Agent, Pseudomonas solanacearum, Hayward, A.C. & G.L. Hartman (Eds.)., CAB International, Wallingford, UK., pp: 137.

Deslandes, L., & Genin, S. (2014) Opening the Ralstonia solanacearumtype III effector tool box: insights into host cell subversionmechanisms. Curr. Opin. Plant Biol. 20, 110–117.

Ding, C., Shen, Q., Zhang, R., & Chen, W. (2013). Evaluation of rhizosphere bacteria and derived bio-organic fertilizers as potential biocontrol agents against bacterial wilt (Ralstonia solanacearum) of potato. Plant Soil, 366, 453-466.

Dixon, G.R., & Pegg, G.F. (1972). Changes in amino acid content of tomato xylem sap following infection with strains of Verticillium alboatrum. Ann. Bot. 36, 147–154.

Drenth, A., & Guest, D. I. (2016). Fungal and Oomycete diseases of tropical treefruit crops. Annu. Rev. Phytopathol. 543, 373–395. doi: 10.1146/annurev-phyto080615-095944.

Elphinstone, J.G. (1996). Survival and possibilities for extinction of Pseudomonas solanacearum (Smith) Smith in cool climates. Potato Research, 39, 403-410.

Elphinstone, J.G. (2005). The Current Bacterial Wilt Situation: A Global Overview. dalam: Bacterial Wilt Disease and the Ralstonia solanacearum species Complex, Allen, C., P. Prior and A.C. Hayward (Eds.). APS Press, St Paul, MN, USA., ISBN: 0890543291, pp: 9-28.

Enfinger, J. M., Mccarter, S. M., & Jaworski, C. A. (1979). Evaluation of chemicals and applicationmethods for the control of bacterial wilt of tomato transplants. Phytopathology, 69, 637-640.

EPPO. (2004). EPPO standards PM 7/21. Diagnostic protocols for regulated pests: Ralstonia solanacearum. EPPO (Europen Plant Protection Organization). Bulletin, 34, 173–178.

EPPO/CABI. (2006). Distribution maps of plant diseases: Ralstonia solanacearum (2003–2006). http://www.cabi.org/DMPD.

Farag, N. S., Lashin, S. M., Abdel-All, R. S., Shatta, H. M., & Seif-Elyazal, A. M. (1982). Antibiotics andcontrol of potato black leg and brown rot diseases. Agric. Res. Rev, 60(2), 149-166.

Fatima, U., & Senthil-Kumar, M. (2015) Plant and pathogennutrientacquisition strategies. Front. Plant Sci, 6, 750.

Fegan, M., & Prior, P. (2005). “How complex is the Ralstonia solanacearumspecies complex?” in Bacterial Wilt Disease and the Ralstonia solanacearum Species Complex, eds C. Allen, P. Prior, and A. C. Hayward (St. Paul, MN: APSPress), 449–461.

Fock, I., Collonnier, C., Purwito, A., Luisetti, J. & Souvannavong, V. (2000). Resistance to bacterial wilt in somatic hybrids between Solanum tuberosum and Solanum phureja. Plant Sci., 160, 165-176.

Froines, J. R. (2010). “Findings of the Scientific Review Panel on Evaluation of Chloropicrin as a Toxic Air Contaminant‟ as Adopted at the Panel‟s February 24, 2010, “Public Meeting.” CaliforniaDepartment of Pesticide Regulation.

Garcia, R., & Kerns, J., & Thiessen, L. (2019). Ralstonia solanacearum Species Complex: A Quick Diagnostic Guide. Plant Health Progress, 20, 7-13. 10.1094/PHP-04-18-0015-DG.

Gäumann, E. (1921). Onderzoekingen over de bloedziekte der bananen op Celebes I. (Investigations into the blood disease of bananas on Celebes Island) Mededeelingen van het Instituut voor Plantenziekten No. 50, 47p. Rev. Appl. Mycol., 1, 225–227.

Gäumann, E. (1924). Onderzoekingen over de bloedziekte der bananen op Celebes II. (Investigations on the blood disease of banana in Celebes II). Mededeelingenvan het Instituut voor Plantenziekten No. 59, 45p. Rev. Appl. Mycol., 1, 344–346.

Geddes, A. M. W. (1992). The relative importance of pre-harvest crop pests in Indonesia. Bulletin-Natural Resources Institute, (47).

Gillings, M. R., & Fahy, P. (1994). “Genomic fingerprinting: towards a unifiedview of the Pseudomonas solanacearum species complex” in Bacterial Wilt the Disease and Its Causative Agent, Pseudomonas solanacearum, eds A. C. Haywardand G. L. Hartman (Wallington: CAB International).

Gomes, A.T., Junior, A.S., Seidel, C., Smania, E.F.A., Honda, N.K., Roese, F.M., & Muzzi, R.M. (2003). Antibacterial activity of orsellinates. Braz. J. Microbiol, 34, 194-196.

Gorissen, A., van Overbeek, L.S., & van Elsas, J.D. (2004). Pig slurry reduces the survival of Ralstonia solanacearum biovar 2 in soil. Can. J. Microbiol, 50, 587-593.

Graham, J., & Lloyd, A. B. (1979). Survival of potato strain (race 3) of Pseudomonas solanacearum in the deeper soil layers. Austral. J. Agric. Res. 30, 489–496. doi: 10.1071/AR9790489.

Grey, B. E., & Steck, T. R. (2001). The viable but nonculturable state of Ralstoniasolanacearum may be involved in long-term survival and plant infection. Appl. Environ. Microbiol. 67, 3866–3872. doi: 10.1128/AEM.67.9.3866-3872.2001.

Grimault, V., & Prior, P. (1993). Bacterial wilt resistance in tomato associated with tolerance of vascular tissues to Pseudomonas solanacearum. Plant Pathology, 42(4), 589-594.

Guarischi-Sousa, R., Puigvert, M., Coll, N. S., Siri, M. I., Pianzzola, M. J., Valls, M., & Setubal, J. C. (2016). Complete genome sequence of the potato pathogen Ralstonia solanacearum UY031. Standards in genomic sciences, 11(1), 7.

Guinard, J., Anne, L., Fabien, G., St´ephane, P., & Emmanuel, W. (2017). Newmultilocus variable-number tandem-repeat analysis (MLVA) scheme forfine-scale monitoring and microevolution-related study of Ralstonia pseudosolanacearum Phylotype I populations. Appl. Environ. Microbiol. 83, e03095-16.

Guo, J.H., Qi, H.Y., Guo, Y.H., Ge, H.L., Gong, L.Y., Zhang, L.X., & Sun, P.H. (2004). Biocontrol of tomato wilt by plant growthpromoting rhizobacteria. Biol. Control, 29, 66-72.

Hase, S., Shimizu, A., Nakaho, K., Takenaka, S., & Takahashi, H. (2006). Induction of transient ethylene and reduction in severity of tomato bacterial wilt by Pythium oligandrum. Plant Pathol., 55, 537-543.

Hassan, M.A.E. & Abo-Elyousr, K.A.M. (2013). Activation of tomato plant defence responses against bacterial wilt caused by Ralstonia solanacearum using DL-3-aminobutyric acid (BABA). Eur. J. Plant Pathol., 136, 145-157.

Hawes, M. et al. (2016). Root border cells and their role in plant defense. Annu. Rev. Phytopathol, 54, 143–161.

Hayward, A. C. (1964). Characteristics of Pseudomonas solanacearum. J. Appl. Bacteriol, 27, 265–277. doi: 10.1111/j.1365-2672.1964.tb04912.x.

Hayward, A. C. (1991). Biology and epidemiology of bacterial wilt caused byPseudomonas solanacearum. Annu. Rev. Phytopathol. 29, 65–87. doi: 10.1146/annurev.py.29.090191.000433.

Hayward, A. C. (1994). “Systematics and phylogeny of Pseudomonas solanacearum and related bacteria” in Bacterial Wilt: The Disease and Its Causative Agent, Pseudomonas solanacearum, eds A. C. Hayward and G. L.Hartman (Wallingford: CAB International), 123–135.

Hayward, A. C. (1994). “The hosts of Pseudomonas solanacearum” in Bacterial Wilt: The Disease and Its Causative Agent, Pseudomonas solanacearum, eds A. C. Hayward and G. L. Hartman (Wallington: CAB International).

Hayward, A. C. (2000). “Ralstonia solanacearum” in Enclopedia of Microbiology, 2nd Edn, Vol. 4. San Diego, CA: Academic Press, 32–42.

He, L. Y., Sequeira, L., & Kelman, A. (1983). Characteristics of strains ofPseudomonas solanacearum from China. Plant Dis. 67, 1357–1361. doi: 10.1094/PD-67-1357.

Hida, A., Oku, S., Kawasaki, T., Nakashimada, Y., Tajima, T., & Kato, J. (2015). Identification of the mcpA and mcpM genes, encoding methyl-accepting proteins involved in amino acid and l-malate chemotaxis, and involvement of McpM-mediated chemotaxis in plant infection by Ralstonia pseudosolanacearum (formerly Ralstonia solanacearum phylotypes I and III). Appl. Environ. Microbiol., 81(21), 7420-7430.

Hoa, L.H., Furuya, N., Yamamot, I., Takeshita, M., & Takanami, Y. (2004). Identification of the endophytic bacterial isolates and their in vitro and in vivo antagonism against Ralstonia solanacearum. J. Agric., 49, 233-241.

Hoffman, M. D., Zucker, L. I., Brown, P. J., Kysela, D. T., Brun, Y. V., & Jacobson, S. C. (2015). Timescales and frequencies of reversible and irreversible adhesion events of single bacterial cells. Analytical chemistry, 87(24), 12032-12039.

Hong, J. C., Norman, D. J., Reed, D. L., Momol, M. T., & Jones, J. B. (2012). Diversity among Ralstonia solanacearum strains isolated from the southeastern United States. Phytopathology, 102, 924-936.

Hu, H.Q., Li, X.S., & He, H. (2010). Characterization of an antimicrobial material from a newly isolated Bacillus amyloliquefaciens from mangrove for biocontrol of capsicum bacterial wilt. Biol. Control, 54, 359-365.

Huang, J., Wei, Z., Tan, S., Mei, X., Yin, S., Shen, Q., & Xu, Y. (2013). The rhizosphere soil of diseased tomato plants as a source for novel microorganisms to control bacterial wilt. Applied Soil Ecol., 72, 79-84.

Huang, Q., & Allen, C. (2000). Polygalacturonases are requiredforrapid colonization and full virulence of Ralstonia solanacearumontomato plants. Physiol. Mol. Plant Pathol. 57, 77–83.

Hwang, Y.H., Matsushita, Y.I., Sugamoto, K., & Matsui, T. (2005). Antimicrobial effect of the wood vinegar from Cryptomeria japonica sapwood on plant pathogenic microorganisms. J. Microbiol. Biotechnol., 15, 1106-1109.

Hyakumachi, M., Nishimura, M., Arakawa, T., Asano, S., Yoshida, S., Tsushim, S., & Takahashi, H. (2013). Bacillus thuringiensis suppresses bacterial wilt disease caused by Ralstonia solanacearum with systemic induction of defenserelated gene expression in tomato. Microbes Environ., 28, 128-134.

Igawa, T., Ide, M., Nion, Y.A., Toyota, K., Kuroda, T., & Masuda, K. (2008). Effect of the addition of lysine and biocontrol agents to hydroponic culture using a pumice medium on bacterial wilt of tomato. Soil Microbiol., 62, 9-14.

Islam, T.M.D., & Toyota, K. (2004). Effect of moisture conditions and pre-incubation at low temperature on bacterial wilt of tomato caused by Ralstonia solanacearum. Microbes Environ., 19, 244-247.

Janse, J. D. (1996). Potato brown rot in western Europe – history, presentoccurrence and some remarks on possible origin, epidemiology and control strategies. EPPO/OEPP Bull. 18, 343–351. doi: 10.1111/j.1365-2338.1988.tb00385.x.

Janse, J. D., van den Beld, H. E., Elphinstone, J., Simpkins, S., Tjou-Tam, N. N. A., & Vaerenbergh, J. (2004). Introduction to Europe of Ralstonia solanacearumbiovar 2, race 3 in Pelargonium zonale cuttings. J. Plant Pathol., 86, 147–155.

Janvier, C., Villeneuve, F., Alabouvette, C., Edel-Hermann, V., Mateille, T., & Steinberg, C. (2007). Soil health through soil disease suppression: Which strategy from descriptors to indicators? Soil Biol. Biochem., 39, 1-23.

Ji, D., Yi, Y., Kang, G.K., Choi, Y.H., Kim, P., Baek, N.I., and Kim, Y. (2004). Identification of an antibacterial compound, benzylideneacetone, from Xenorhabdus nematophila against major plant-pathogenic bacteria. Microbiol. Lett., 239, 241-248.

Ji, P., Momol, M.T., Olson, S.M., Pradhanang, P.M., & Jones, J.B. (2005). Evaluation of thymol as biofumigant for control of bacterial wilt of tomato under field conditions. Plant Dis., 89, 497-500.

Jiang, G., Wei, Z., Xu, J., Chen, H., Zhang, Y., She, X., Macho, AP., Ding, W,. & Liao, B. (2017) Bacterial Wilt in China: History, Current Status, and Future Perspectives. Front. Plant Sci. 8, 1549. doi:10.3389/fpls.2017.01549.

Kang, Y., Liu, H., Genin, S., Schell, M. A., & Denny, T. P. (2002). Ralstonia solanacearum requires type 4 pili to adhere to multiple surfaces and for natural transformation and virulence. Molecular microbiology, 46(2), 427-437.

Kao, CC., Barlow, E., & Sequeira, L. (1992). Extracellular polysaccharide is required for wildtype virulence of Pseudomonas solanacearum. Journal of Bacteriology. 174: 1068-1071.

Kawabata, N., Kishimoto, H., Abe, T., Ikawa, T., Yamanaka, K., Ikeuchi, H., & Kakimoto, C. (2005). Control of tomato bacterial wilt without disinfection using a new functional polymer that captures microbial cells alive on the surface and is highly biodegradable. Bioscience, biotechnology, and biochemistry, 69(2), 326-333.

Kelman, A. (1953). The bacterial wilt caused by Pseudomonas solanacearum. Technical Bulletin of North Carolina Agricultural Experiment Station, (99).

Kelman, A. (1998). One hundred and one years of research on bacterial wilt. In Bacterial Wilt Disease (pp. 1-5). Springer, Berlin, Heidelberg.

Kelman, A., Hartman, G.L., & Hayward, A.C. (1994). Introduction. dalam: A.C. Hayward and G.L. Hartman (eds.). Bacterial wilt: the disease and its causative agent, Pseudomonas Solanacearum. CAB International, United Kingdom. p:1–7.

Khanum, S. A., Shashikanth, S., Umesha, S., & Kavitha, R. (2005). Synthesis and antimicrobial study of novel heterocyclic compounds from hydroxybenzophenones. European journal of medicinal chemistry, 40(11), 1156-1162.

Kühne, S. A., Hawes, W. S., La Ragione, R. M., Woodward, M. J., Whitelam, G. C., & Gough, K. C. (2004). Isolation of recombinant antibodies against EspA and intimin of Escherichia coli O157: H7. Journal of clinical microbiology, 42(7), 2966-2976.

Kurabachew, H., & Wydra, K. (2014). Induction of systemic resistance and defense-related enzymes after elicitation of resistance by rhizobacteria and silicon application against Ralstonia solanacearum in tomato (Solanum lycopersicum). Crop Protection, 57, 1-7.

Li, B., Yu, R., Tang, Q., Su, T., Chen, X., Zhu, B., ... & Sun, G. (2011). Biofilm formation ability of Paenibacillus polymyxa and Paenibacillus macerans and their inhibitory effect against tomato bacterial wilt. Afr. J. Microbiol. Res, 5, 4260-4266.

Li, L., Feng, X., Tang, M., Hao, W., Han, Y., Zhang, G., & Wan, S. (2014). Antibacterial activity of Lansiumamide B to tobacco bacterial wilt (Ralstonia solanacearum). Microbiological research, 169(7-8), 522-526.

Li, Z., Wu, S., Bai, X., Liu, Y., Lu, J., Liu, Y., ... & Fan, L. (2011). Genome sequence of the tobacco bacterial wilt pathogen Ralstonia solanacearum.

Lin, W. C., Lu, C. F., Wu, J. W., Cheng, M. L., Lin, Y. M., Yang, N. S., ... & Cheng, C. P. (2004). Transgenic tomato plants expressing the Arabidopsis NPR1 gene display enhanced resistance to a spectrum of fungal and bacterial diseases. Transgenic research, 13(6), 567-581.

Liu, H., Kang, Y., Genin, S., Schell, M. A., & Denny, T. P. (2001). Twitching motility of Ralstonia solanacearum requires a type IV pilus system. Microbiology, 147(12), 3215-3229.

Liu, Y., Kanda, A., Yano, K., Kiba, A., Hikichi, Y., Aino, M., ... & Takikawa, Y. (2009). Molecular typing of Japanese strains of Ralstonia solanacearum in relation to the ability to induce a hypersensitive reaction in tobacco. Journal of general plant pathology, 75(5), 369-380.

Lowe‐Power, T. M., Hendrich, C. G., von Roepenack‐Lahaye, E., Li, B., Wu, D., Mitra, R., ... & Jancewicz, A. (2018). Metabolomics of tomato xylem sap during bacterial wilt reveals Ralstonia solanacearum produces abundant putrescine, a metabolite that accelerates wilt disease. Environmental microbiology, 20(4), 1330-1349.

Machmud, M. (1993). Present status of groundnut bacterial wilt research in Indonesia. dalam: Groundnut Bacterial Wilt. Proc. of the 2nd Working Group Meeting. ICRISAT, India. p:15– 25.

Magarey, R. C., Kristini, A., Sallam, N., Samson, P. R., Achadian, E., McGuire, P. J., ... & Lonie, K. (2010). IPM strategies for pest and disease control in Indonesia: project overview and outcomes from recent ACIAR-funded research. In Proceedings of the Australian Society of Sugar Cane Technologists (Vol. 32, pp. 169-180).

Mansfield, J., Genin, S., Magori, S., Citovsky, V., Sriariyanum, M., Ronald, P., ... & Toth, I. A. N. (2012). Top 10 plant pathogenic bacteria in molecular plant pathology. Molecular plant pathology, 13(6), 614-629.

Mansfield, J., Genin, S., Magori, S., Citovsky, V., Sriariyanum, M., Ronald, P., ... & Toth, I. A. N. (2012). Top 10 plant pathogenic bacteria in molecular plant pathology. Molecular plant pathology, 13(6), 614-629.

Matsushita, Y. I., Hwang, Y. H., Sugamoto, K., & Matsui, T. (2006). Antimicrobial activity of heartwood components of sugi (Cryptomeria japonica) against several fungi and bacteria. Journal of wood science, 52(6), 552-556.

Maulana, M., & Sayaka, B. (2016). The features of vegetables in Indonesia and the current policy in the framework of agricultural development. Analisis Kebijakan Pertanian, 5(3), 267-284.

Mbaka, J. N., Gitonga, J. K., Gathambari, C. W., Mwangi, B. G., Githuka, P., & Mwangi, M. (2013). Identification of knowledge and technology gaps in high tunnels tomato production in Kirinyaga and Embu counties.

Mbega, E. R., Adriko, J., Mortensen, C. N., Wulff, E. G., Lund, O. S., & Mabagala, R. B. (2013). Improved sample preparation for PCR-based assays in the detection of Xanthomonads causing bacterial leaf spot of tomato. Biotechnology Journal International, 556-574.

McGarvey, J. A., Denny, T. P., & Schell, M. A. (1999). Spatial-temporal and quantitative analysis of growth and EPS I production by Ralstonia solanacearum in resistant and susceptible tomato cultivars. Phytopathology, 89(12), 1233-1239.

Mehan, V. K., & McDonald, D. (1994). Groundnut Bacterial Wilt in Asia: Proceedings of the Third Working Group Meeting, 4-5 Jul 1994, Oil Crops Research Institute, Wuhan, China. International Crops Research Institute for the Semi-Arid Tropics.

Messiha, N. A. S., Van Diepeningen, A. D., Farag, N. S., Abdallah, S. A., Janse, J. D., & Van Bruggen, A. H. C. (2007). Stenotrophomonas maltophilia: a new potential biocontrol agent of Ralstonia solanacearum, causal agent of potato brown rot. European journal of plant pathology, 118(3), 211-225.

Momma, N. (2008). Biological soil disinfestation (BSD) of soilborne pathogens and its possible mechanisms. Japan Agricultural Research Quarterly: JARQ, 42(1), 7-12.

Morris, C. E., Bardin, M., Kinkel, L. L., Moury, B., Nicot, P. C., & Sands, D. C. (2009). Expanding the paradigms of plant pathogen life history and evolutionof parasitic fitness beyond agricultural boundaries. PLoS Pathog. 5:e1000693. doi: 10.1371/journal.ppat.1000693.

Muharam, A., & Subijanto. (1991). “Status of banana diseases in Indonesia,” in Proceedings of the Technical Meeting in Diseases Affecting Banana and Plantainin Asia and Pacific, eds Valmayar, R. V., Umali, B. E., & Bejosano, C. P. (Brisbane, QLD: INIBAP), 44–49.

Mulya, K., Supriadi, S., Adhi, E. M., Rahayu, S., & Karyani, N. (2017). Potensi bakteri antagonis dalam menekan perkembangan penyakit layu bakteri jahe.

Nakaune, M., Tsukazawa, K., Uga, H., Asamizu, E., Imanishi, S., Matsukura, C., & Ezura, H. (2012). Low sodium chloride priming increases seedling vigor and stress tolerance to Ralstonia solanacearum in tomato. Plant Biotechnology, 1202180066-1202180066.

Nasrun, N., Christanti, C., Arwiyanto, T., & Mariska, I. (2007). Karakteristik fisiologis Ralstonia solanacearum penyebab penyakit layu bakteri nilam. Jurnal Penelitian Tanaman Industri, 13(2), 43-48.

Ndakidemi, P. A. (2007). Agronomic and economic potential of Tughutu and Minjingu phosphate rock as alternative phosphorus sources for bean growers. Pedosphere, 17(6), 732-738.

N'Guessan, C. A., Brisse, S., Le Roux-Nio, A. C., Poussier, S., Koné, D., & Wicker, E. (2013). Development of variable number of tandem repeats typing schemes for Ralstonia solanacearum, the agent of bacterial wilt, banana Moko disease and potato brown rot. Journal of microbiological methods, 92(3), 366-374.

Nion, Y. A., & Toyota, K. (2008). Suppression of bacterial wilt and Fusarium wilt by a Burkholderia nodosa strain isolated from Kalimantan soils, Indonesia. Microbes and environments, 23(2), 134-141.

Norman, D. J., Chen, J., Yuen, J. M. F., Mangravita-Novo, A., Byrne, D., & Walsh, L. (2006). Control of bacterial wilt of geranium with phosphorous acid. Plant disease, 90(6), 798-802.

Olivier, A. R., Uda, Y., Bang, S. W., Honjo, H., Fukami, M., & Fukui, R. (2006). Dried residues of specific cruciferous plants incorporated into soil can suppress the growth of Ralstonia solanacearum, independently of glucosinolate content of the residues. Microbes and Environments, 21(4), 216-226.

Ooshiro, A., Takaesu, K., Natsume, M., Taba, S., Nasu, K., Uehara, M., & Muramoto, Y. (2004). Identification and use of a wild plant with antimicrobial activity against Ralstonia solanacearum, the cause of bacterial wilt of potato. Weed Biology and Management, 4(4), 187-194.

Ordóñez, R. M., Ordóñez, A. A., Sayago, J. E., Moreno, M. I. N., & Isla, M. I. (2006). Antimicrobial activity of glycosidase inhibitory protein isolated from Cyphomandra betacea Sendt. fruit. Peptides, 27(6), 1187-1191.

Pacumbaba, R. P., Beyl, C. A., & Pacumbaba Jr, R. O. (1999). Shiitake mycelial leachate suppresses growth of some bacterial species and symptoms of bacterial wilt of tomato and lima bean in vitro. Plant disease, 83(1), 20-23.

Paret, M. L., Sharma, S. K., & Alvarez, A. M. (2012). Characterization of biofumigated Ralstonia solanacearum cells using micro-Raman spectroscopy and electron microscopy. Phytopathology, 102(1), 105-113.

Parkinson, N., Bryant, R., Bew, J., Conyers, C., Stones, R., Alcock, M., & Elphinstone, J. (2013). Application of variable-number tandem-repeat typing to discriminate Ralstonia solanacearum strains associated with English watercourses and disease outbreaks. Appl. Environ. Microbiol., 79(19), 6016-6022.

Posas, M. B., & Toyota, K. (2009). Mechanism of tomato bacterial wilt suppression in soil amended with lysine. Microbes and environments, 1002100165-1002100165.

Posas, M. B., Toyota, K., & Islam, T. M. (2007). Inhibition of bacterial wilt of tomato caused by Ralstonia solanacearum by sugars and amino acids. Microbes and environments, 22(3), 290-296.

Prabaningrum, L., & Moekasan, T. K. (2016). Pengelolaan organisme pengganggu tumbuhan utama pada budidaya cabai merah di dataran tinggi.

Pradhanang, P. M., Ji, P., Momol, M. T., Olson, S. M., Mayfield, J. L., & Jones, J. B. (2005). Application of acibenzolar-S-methyl enhances host resistance in tomato against Ralstonia solanacearum. Plant disease, 89(9), 989-993.

Prior, P., Allen, C., & Elphinstone, J. (Eds.). (2013). Bacterial wilt disease: molecular and ecological aspects. Springer Science & Business Media.

Prior, P., and Fegan, M. (2005.) “Recent developments in the phylogeny andclassification of Ralstonia solanacearum” in Proceedings of the 1st InternationalSymposium on Tomato Diseases (Acta Horticulturae), eds M. T. Momol, P. Ji,and J. B. Jones (Orlando, FL: International Society for Horticultural Science),127–136.doi: 10.17660/ActaHortic.2005.695.14.

Ramesh, R., & Phadke, G. S. (2012). Rhizosphere and endophytic bacteria for the suppression of eggplant wilt caused by Ralstonia solanacearum. Crop Protection, 37, 35-41.

Ray, D. K., Mueller, N. D., West, P. C., & Foley, J. A. (2013). Yield trends are insufficient to double global crop production by 2050. PloS one, 8(6), e66428.

Remenant, B., Coupat-Goutaland, B., Guidot, A., Cellier, G., Wicker, E., Allen, C., Fegan, M., Pruvost, O., Elbaz, M. & other authors (2010). Genomes of three tomato pathogens within the Ralstonia solanacearum species complex reveal significant evolutionary divergence. BMC Genomics 11, 379.

Remenant, B., de Cambiaire, J.-C., Cellier, G., Jacobs, J. M., Mangenot, S., Barbe, V., Lajus, A., Vallenet, D., Medigue, C. & other authors (2011). Ralstonia syzygii, the blood disease bacterium and some Asian R. solanacearum strains form a single genomic species despite divergent lifestyles. PLoS ONE, 6, e24356.

Roberts, DP., Denny, TP., & Schell, MA. (1988). Cloning of the egl gene of Pseudomonas solanacearum and analysis of its role in phyopathogenicity. Journal of Bacteriology, 170, 1445-1451.

Sabbagh, C. R. R., Carrere, S., Lonjon, F., Vailleau, F., Macho, A. P., Genin, S., & Peeters, N. (2019). Pangenomic type III effector database of the plant pathogenic Ralstonia spp. PeerJ, 7, e7346.

Saddler, G. S. (2005). Management of bacterial wilt disease. dalam: C. Allen, P. Prior and A. C. Hayward (eds). Bacterial Wilt Disease and the Ralstonia solanacearum Species Complex. American Phytopathological Society, St., pp. 121-132.

Safni, I., Cleenwerck, I., De Vos, P., Fegan, M., Sly, L., & Kappler, U. (2014). Polyphasic taxonomic revision of the Ralstonia solanacearum species complex: Proposal to emend the descriptions of Ralstonia solanacearum and Ralstonia syzygii and reclassify current R. syzygii strains as Ralstonia syzygii subsp. syzygii subsp. nov., R. solanacearum phylotype IV strains as Ralstonia syzygii subsp. indonesiensis subsp. nov., banana blood disease bacterium strains as Ralstonia syzygii subsp. celebesensis subsp. nov. and R. solanacearum phylotype I and III strains as Ralstonia pseudosolanacearum sp. nov. Int. J. Syst. Evol. Microbiol, 64, 3087-3103.

Saile, E., McGarvey, J., Schell, MA., & Denny, TP. (1997). Role of extracellular polysaccharide and endoglucanase in root invasion and colonization of tomato plants by Ralstonia solanacearum. Phytopathology, 87, 1264-1271.

Salanoubat, M., Genin, S., Artiguenave, F., Gouzy, J., Mangenot, S., Arlat, M., Billault, A., Brottier, P., Camus, J. C. & other authors (2002). Genome sequence of the plant pathogen Ralstonia solanacearum. Nature 415, 497–502.

Sharma, J. P., & Kumar, S. (2000). Management of Ralstonia wilt through soil disinfectant, mulch, lime and cakes in tomato (Lycopersicon esculentum). Indian Journal of Agricultural Sciences, 70(1), 17-19.

Shimpi, S. R., Chaudhari, L. S., Bharambe, S. M., Kharche, A. T., Patil, K. P., Bendre, R. S., & Mahulikar, P. P. (2005). Evaluation of antimicrobial activity of organic extract of leaves of Aristolochia bracteata. Pesticide Research Journal, 17(1), 16-18.

Sneath, P.H., Bread, R.S., Murray, E.G., & Smith, R.N. (1986). Bergeys Manual of Determination Bacteriology. William and Wilkins Co., London, pp: 232.

Supriadi & Hadipoentyanti, E. (2000). Manfaat Ocimum spp. dan kendala penyakit layu bakteri. Prosiding forum komunikasi ilmiah pemanfaatan pestisida nabati. Pusat Penelitian dan Pengembangan Perkebunan. Bogor. Hlm. 432–439.

Supriadi, D., Mulya, K., & Sipetu, D. (2001). Bacterial wilt disease of woody treescaused by Ralstonia solanacearum: a review. JPPP, 20, 106–112.

Supriadi, Mulya, K., & Sitepu, D. (2000). Strategy for controlling wilt disease of ginger caused by Pseudomonas solanacearum. J. Penelitian dan Pengembangan Pertanian, 19(3), 106– 111.

Supriadi. (1999). Karakterisasi kultur dan patogenisitas isolat Pseudomonas celebensis penyebab penyakit darah pada tanaman pisang. J. Hortikultura, 9(2), 129–136.

Supriadi. (2011). Penyakit layu bakteri (Ralstonia solanacearum): dampak, bioekologi, dan peranan teknologi pengendaliannya. Pengembangan inovasi pertanian, 4(4), 279–293.

Suryana, A., Allorerung, D., Wahid, P., Manohara, D., Pribadi, R., & Indrawanto, C. (2004). Prospek dan Pengembangan Agibisnis Cengkeh. Jakarta: Researchand Development Institute.

Swanson, J. K., Montes, L., Mejia, L., & Allen, C. (2007). Detection of latentinfections of Ralstonia solanacearum race 3 biovar 2 in geranium. Plant Dis., 91, 828–834. doi: 10.1094/PHYTO-95-0136.

Tahat, M. M., & Sijam, K. (2010). Ralstoina solanacearum: The bacterial wilt causal agent. Asian Journal of Plant Sciences, 9(7), 385.

Tahat, M. M., Sijam, K., & Othman, R. (2012). The potential of endomycorrhizal fungi in controlling tomato bacterial wilt Ralstonia solanacearum under glasshouse conditions. African Journal of Biotechnology, 11(67), 13085-13094.

Takahashi, H., Nakaho, K., Ishihara, T., Ando, S., Wada, T., Kanayama, Y., ... & Hyakumachi, M. (2014). Transcriptional profile of tomato roots exhibiting Bacillus thuringiensis-induced resistance to Ralstonia solanacearum. Plant cell reports, 33(1), 99-110.

Takikawa, Y. (2012). Studies on identification and taxonomy of plant pathogenic bacteria. Journal of General Plant Pathology, 78(6), 409-412.

Tan, S., Y. Jiang, S. Song, J. Huang, N. Ling, Y. Xu and Q. Shen, (2013). Two Bacillus amyloliquefaciens strains isolated using the competitive tomato root enrichment method and their effects on suppressing Ralstonia solanacearum and promoting tomato plant growth. Crop Prot., 43: 134-140.

Tans-Kersten, J. et al. (2001) Ralstonia solanacearum needsmotilityfor invasive virulence on tomato. J. Bacteriol. 183,3597–3605.

Teixeira, F. R., Lima, M. C. O. P., Almeida, H. O., Romeiro, R. S., Silva, D. J. H., Pereira, P. R. G., ... & Baracat‐Pereira, M. C. (2006). Bioprospection of cationic and anionic antimicrobial peptides from bell pepper leaves for inhibition of Ralstonia solanacearum and Clavibacter michiganensis ssp. michiganensis growth. Journal of phytopathology, 154(7‐8), 418-421.

Terblanche, J., & de Villiers, D.A. (2013). The Suppression of Ralstonia by Marigolds solanacearum. dalam: Bacterial Wilt Disease: Molecular and Ecological Aspects, 1st Edn., Prior, P., Allen, C., & Elphinstone, J. (Eds.)., Springer Science and Business Media, Paris, pp: 325-331.

Tran, T.M., MacIntyre, A., Khokhani, D., Hawes, M., & Allen, C. (2016). Extracellular DNases of Ralstonia solanacearum modulate biofilms and facilitate bacterial wilt virulence. Environmental microbiology, 18(11), 4103-4117.

Tung, P. X., Rasco, E. T., Vander Zaag, P., & Schmiediche, P. (1990). Resistance to Pseudomonas solanacearum in the potato: II. Aspects of host-pathogen-environment interaction. Euphytica, 45(3), 211-215.

USDA. (2003). Biological control of Fusarium wilt and other soilborne pathogenic fungi. http://www.ars.usda.gov/research/projects/projects.htm?ACCN_NO=406590&fy=2003.

Vasse, J., Frey, P., & Trigalet, A. (1995). Microscopic studies of intercellular infection and protoxylem invasion of tomato roots by Pseudomonas solanacearum. MPMI-Molecular Plant Microbe Interactions, 8(2), 241-251.

Vincelli, P., & Tisserat, N. (2008). Nucleic acid–based pathogen detection in applied plant pathology. Plant Disease, 92(5), 660-669.

Waller, J. M., & Sitepu, D. (1975). Sumatra disease of cloves in Indonesia. PANS Pest Articles & News Summaries, 21(2), 141-147. doi: 10.1080/09670877509411385.

Wang, E.L., & Bergeson, G.B. (1974) Biochemical changes inrootexudate and xylem sap of tomato plants infected with Meloidogyneincognita. J. Nematol, 6, 194–202.

Wang, J.F., & Lin, C.H. (2005). Integrated management of tomato bacterial wilt. AVRDC-The world vegetable center, Taiwan.

Weibel, J., Tran, T. M., Bocsanczy, A. M., Daughtrey, M., Norman, D. J., Mejia, L., & Allen, C. (2016). A Ralstonia solanacearum strain from Guatemala infects diverse flower crops, including new asymptomatic hosts vinca and sutera, and causes symptoms in geranium, mandevilla vine, and new host African daisy (Osteospermum ecklonis). Plant health progress, 17(2), 114-121.

White, M. C., Decker, A. M., & Chaney, R. L. (1981). Metal complexation in xylem fluid: I. Chemical composition of tomato and soybean stem exudate. Plant Physiology, 67(2), 292-300.

Wicker, E., Grassart, L., Coranson-Beaudu, R., Mian, D., Guilbaud, C., Fegan, M., & Prior, P. (2007). Ralstonia solanacearum strains from Martinique (French West Indies) exhibiting a new pathogenic potential. Applied and Environmental Microbiology, 73, 6790-6801.

Wicker, E., Lefeuvre, P., de Cambiaire, J.-C., Lemaire, C., Poussier, S. & Prior, P. (2012). Contrasting recombination patterns and demographic histories of the plant pathogen Ralstonia solanacearum inferred from MLSA. ISME J., 6, 961–974.

Wuryandari, Y. (2004). Formulasi pil-benih tembakau dengan Pseudomonas putida strain Pf–20 untuk pengendalian biologi penyakit layu bakteri (Ralstonia solanacearum). Disertasi. Universitas Gadjah Mada, Yogyakarta. Tidak dipublikasi. 120 hlm.

Wydra, K., & Dannon, E. (2006). Silicon as inducer of resistance in tomato against Ralstonia solanacearum. IOBC WPRS BULLETIN, 29(8), 91-96.

Xu, H. S., Roberts, N., Singleton, F. L., Attwell, R. W., Grimes, D. J., & Colwell, R. R. (1982). Survival and viability of nonculturable Escherichia coli and Vibriocholerae in the estuarine and marine environment. Microb. Ecol., 8, 313–323. doi: 10.1007/BF02010671.

Xu, J., Pan, Z. C., Prior, P., Xu, J. S., Zhang, Z., Zhang, H., ... & Feng, J. (2009). Genetic diversity of Ralstonia solanacearum strains from China. European journal of plant pathology, 125(4), 641-653.

Xu, J., Zheng, H. J., Liu, L., Pan, Z. C., Prior, P., Tang, B., ... & Feng, J. (2011). Complete genome sequence of the plant pathogen Ralstonia solanacearum strain Po82. J. Bacteriol, 193, 4261–4262.

Xu, L., Wang, W., Wei, H. G., Shen, G. M., & Li, Y. G. (2006). Effect of Paenibacillus polymyxa HY96-2 on bacterial wilt of tomato. Chinese Journal of Biological Control, 3.

Xue, Q. Y., Ding, G. C., Li, S. M., Yang, Y., Lan, C. Z., Guo, J. H., & Smalla, K. (2013). Rhizocompetence and antagonistic activity towards genetically diverse Ralstonia solanacearum strains–an improved strategy for selecting biocontrol agents. Applied microbiology and biotechnology, 97(3), 1361-1371.

Xue, Q. Y., Yin, Y. N., Yang, W., Heuer, H., Prior, P., Guo, J. H., & Smalla, K. (2011). Genetic diversity of Ralstonia solanacearum strains from China assessed by PCR-based fingerprints to unravel host plant-and site-dependent distribution patterns. FEMS microbiology ecology, 75(3), 507-519.

Yabuuchi E., Kosako, Yano, I., Hotta, H., Nishiuchi, Y. (1995). Transferof two Burkholderia and an Alcaligenes species to RalstoniaGen. Nov. Proposal of Ralstonia pickettii (Ralston, Palleroniand Doudoroff 1973) Comb. Nov. Ralstonia solanacearum (Smith 1896) Comb. Nov. and Ralstonia eutropha (Davis1969) Comb. Nov, Microbiol. Immunol, 39(11), 897–904.

Yamada, T., Kawasaki, T., Nagata, S., Fujiwara, A., Usami, S., & Fujie, M. (2007). New bacteriophages that infect the phytopathogen Ralstonia solanacearum. Microbiology, 153(8), 2630-2639.

Yamasaki, M., Kusakari, S. I., Narita, K., Osamura, K., & Nagai, M. (2006). Control of Root Rot Disease of Tomatoes by Using Weak Acidic Electrolyzed Water (WAEW) in the Hydroponic Culture Solution| Article Information| J-GLOBAL. 防菌防ばい, 34(9), 543-549.

Yang, W., Xu, Q., Liu, H. X., Wang, Y. P., Wang, Y. M., Yang, H. T., & Guo, J. H. (2012). Evaluation of biological control agents against Ralstonia wilt on ginger. Biological control, 62(3), 144-151.

Yao, J., & Allen, C. (2006) Chemotaxis is required for virulence and competitive fitness of the bacterial wilt pathogen Ralstonia solanacearum. J. Bacteriol, 188, 3697–3708.

Yu, J.Q., (1999). Allelopathic suppression of Pseudomonas solanacearum infection of tomato (Lycopersicon esculentum) in a tomato-chinese chive (Allium tuberosum) intercropping system. J. Chem. Ecol., 25, 2409-2417.

Yuan, G. Q., Li, Q. Q., Qin, J., Ye, Y. F., & Lin, W. (2012). Isolation of methyl gallate from Toxicodendron sylvestre and its effect on tomato bacterial wilt. Plant disease, 96(8), 1143-1147.

Yuan, S., Wang, L., Wu, K., Shi, J., Wang, M., Yang, X., ... & Shen, B. (2014). Evaluation of Bacillus-fortified organic fertilizer for controlling tobacco bacterial wilt in greenhouse and field experiments. Applied soil ecology, 75, 86-94.

Yuliar, Nion, Y. A., & Toyota, K. (2015). Recent trends in control methods for bacterial wilt diseases caused by Ralstonia solanacearum. Microbes and environments, 30(1), 1-11.

Zhou, T., Chen, D., Li, C., Sun, Q., Li, L., Liu, F., ... & Shen, B. (2012). Isolation and characterization of Pseudomonas brassicacearum J12 as an antagonist against Ralstonia solanacearum and identification of its antimicrobial components. Microbiological research, 167(7), 388-394.

Zhou, Y., Choi, Y. L., Sun, M., & Yu, Z. (2008). Novel roles of Bacillus thuringiensis to control plant diseases. Applied microbiology and biotechnology, 80(4), 563-572.

Zhu, H. H., & Yao, Q. (2004). Localized and systemic increase of phenols in tomato roots induced by Glomus versiforme inhibits Ralstonia solanacearum. Journal of Phytopathology, 152(10), 537-542.

Zuluaga Cruz, A. P., Puigvert, M., & Valls, M. (2013). Novel plant inputs influencing Ralstonia solanacearum during infection. Frontiers in microbiology, 4, 349.